2024浙江理工大學(xué)已發(fā)布考試大綱,這里小編給大家整理了601數(shù)學(xué)分析考試大綱供大家參考,官方發(fā)布了2本參考書,同學(xué)們可以根據(jù)重點內(nèi)容進行知識點的復(fù)習(xí)鞏固。考研只剩下最后2個月左右的時間,同學(xué)們抓緊復(fù)習(xí)。
浙江理工大學(xué)考研912高等代數(shù)考試內(nèi)容
  一、考試參考書
  《高等代數(shù)》(第5版),北京大學(xué)數(shù)學(xué)系前代數(shù)小組編,王萼芳,石生明修訂,高等教育出版社,出版時間:2019.ISBN:9787040507331
  二、大綱
 ?。ㄒ唬┒囗検?br>  帶余除法、最大公因式、互素的概念與性質(zhì);不可約多項式、因式分解定理、重因式、實系數(shù)與復(fù)系數(shù)多項的因式分解,有理系數(shù)多項式不可約的判定;多項式函數(shù)、多項式的根、有理系數(shù)多項式的有理根求法。
 ?。ǘ┬辛惺?br>  行列式的定義、性質(zhì);行列式的子式、代數(shù)余子式及展開定理;行列式的計算方法;克萊姆法則;行列式乘法
 ?。ㄈ┚€性方程組
  線性方程組的解法;n維向量組的線性相關(guān)性;線性方程組有解的判定定理;線性方程組解法和解的結(jié)構(gòu)
 ?。ㄋ模┚仃?br>  矩陣的運算;初等變換與初等矩陣;可逆矩陣;分塊矩陣;矩陣的秩;矩陣的等價、合同、相似、正交相似;矩陣的可對角化問題
 ?。ㄎ澹┒涡?br>  二次型的標(biāo)準(zhǔn)形與合同變換;復(fù)數(shù)域與實數(shù)域上二次型的標(biāo)準(zhǔn)形、規(guī)范形;正定二次型、半正定二次型、負(fù)定二次型、半負(fù)定二次型及相應(yīng)的矩陣類型
  (六)線性空間
  線性空間的概念;基、維數(shù)與坐標(biāo);基變換與坐標(biāo)變換;子空間及其交與和、直和;線性空間的同構(gòu)
 ?。ㄆ撸┚€性變換
  線性映射與線性變換的概念、運算;線性變換的矩陣表示;線性變換(矩陣)的特征多項式、特征值與特征向量;線性變換的值域與核;不變子空間;最小多項式
 ?。ò耍?lambda;-矩陣
  λ-矩陣在初等變換下的標(biāo)準(zhǔn)形;不變因子、矩陣相似的條件;初等因子、若爾當(dāng)標(biāo)準(zhǔn)形
 ?。ň牛W氏空間
  向量內(nèi)積;正交基(組)、標(biāo)準(zhǔn)正交基(組)、Schmidt正交化方法;度量矩陣;正交變換與正交矩陣;正交補;對稱變換與實對稱矩陣;最小二乘法。
  以上就是【2024浙江理工大學(xué)考研912高等代數(shù)考試內(nèi)容有哪些?】的有關(guān)內(nèi)容,想要了解更多考研資訊,請登錄高頓考研考試網(wǎng)站查詢。
  另外2024考研的小伙伴復(fù)習(xí)到哪里了?小編貼心為你們準(zhǔn)備了豐富的學(xué)習(xí)資料,點擊藍(lán)色卡片即可獲取哦~有沒有用看看就知道啦!還有更多驚喜等著你~快來領(lǐng)取吧
  祝大家備考順利,考研成功沖沖沖!